3.1.7 \(\int \cot ^3(d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx\) [7]

Optimal. Leaf size=747 \[ \frac {\sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \text {ArcTan}\left (\frac {b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )-b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}+\frac {b \tanh ^{-1}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 \sqrt {c} e}-\frac {b \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{16 c^{5/2} e}-\frac {\sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \tanh ^{-1}\left (\frac {b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )+b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}+\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e}+\frac {b (b+2 c \cot (d+e x)) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{8 c^2 e}-\frac {\left (a+b \cot (d+e x)+c \cot ^2(d+e x)\right )^{3/2}}{3 c e} \]

[Out]

-1/16*b*(-4*a*c+b^2)*arctanh(1/2*(b+2*c*cot(e*x+d))/c^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2))/c^(5/2)/e-1
/3*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(3/2)/c/e+1/2*b*arctanh(1/2*(b+2*c*cot(e*x+d))/c^(1/2)/(a+b*cot(e*x+d)+c*co
t(e*x+d)^2)^(1/2))/e/c^(1/2)+(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)/e+1/8*b*(b+2*c*cot(e*x+d))*(a+b*cot(e*x+d)+
c*cot(e*x+d)^2)^(1/2)/c^2/e-1/2*arctanh(1/2*(b^2+b*cot(e*x+d)*(a^2-2*a*c+b^2+c^2)^(1/2)+(a-c)*(a-c+(a^2-2*a*c+
b^2+c^2)^(1/2)))/(a^2-2*a*c+b^2+c^2)^(1/4)*2^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)/(a^2+b^2+c*(c-(a^2-2*
a*c+b^2+c^2)^(1/2))-a*(2*c-(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2))*(a^2+b^2+c*(c-(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c-
(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/e*2^(1/2)+1/2*arctan(1/2*(b^2+(a-c)*(a-c-(a^2-2*a*
c+b^2+c^2)^(1/2))-b*cot(e*x+d)*(a^2-2*a*c+b^2+c^2)^(1/2))/(a^2-2*a*c+b^2+c^2)^(1/4)*2^(1/2)/(a+b*cot(e*x+d)+c*
cot(e*x+d)^2)^(1/2)/(a^2+b^2+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2))*(a^2+b^
2+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/e*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 23.18, antiderivative size = 747, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 12, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3782, 6857, 654, 626, 635, 212, 1035, 1092, 1050, 1044, 214, 211} \begin {gather*} \frac {\sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \text {ArcTan}\left (\frac {-b \sqrt {a^2-2 a c+b^2+c^2} \cot (d+e x)+(a-c) \left (-\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}-\frac {\sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \tanh ^{-1}\left (\frac {b \sqrt {a^2-2 a c+b^2+c^2} \cot (d+e x)+(a-c) \left (\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}-\frac {b \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{16 c^{5/2} e}+\frac {b (b+2 c \cot (d+e x)) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{8 c^2 e}-\frac {\left (a+b \cot (d+e x)+c \cot ^2(d+e x)\right )^{3/2}}{3 c e}+\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e}+\frac {b \tanh ^{-1}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 \sqrt {c} e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[d + e*x]^3*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2],x]

[Out]

(Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b^2 - 2*a*c + c^2])]*ArcTan[(b^2
 + (a - c)*(a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - b*Sqrt[a^2 + b^2 - 2*a*c + c^2]*Cot[d + e*x])/(Sqrt[2]*(a
^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b^2
 - 2*a*c + c^2])]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*e) +
 (b*ArcTanh[(b + 2*c*Cot[d + e*x])/(2*Sqrt[c]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])])/(2*Sqrt[c]*e) - (
b*(b^2 - 4*a*c)*ArcTanh[(b + 2*c*Cot[d + e*x])/(2*Sqrt[c]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])])/(16*c
^(5/2)*e) - (Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c - Sqrt[a^2 + b^2 - 2*a*c + c^2])]
*ArcTanh[(b^2 + (a - c)*(a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) + b*Sqrt[a^2 + b^2 - 2*a*c + c^2]*Cot[d + e*x]
)/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c - S
qrt[a^2 + b^2 - 2*a*c + c^2])]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^
2)^(1/4)*e) + Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2]/e + (b*(b + 2*c*Cot[d + e*x])*Sqrt[a + b*Cot[d + e*x
] + c*Cot[d + e*x]^2])/(8*c^2*e) - (a + b*Cot[d + e*x] + c*Cot[d + e*x]^2)^(3/2)/(3*c*e)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 626

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^p/(2*c*(2*p + 1
))), x] - Dist[p*((b^2 - 4*a*c)/(2*c*(2*p + 1))), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 654

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*((a + b*x + c*x^2)^(p +
 1)/(2*c*(p + 1))), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 1035

Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[h*(a + b*x + c*x^2)^p*((d + f*x^2)^(q + 1)/(2*f*(p + q + 1))), x] - Dist[1/(2*f*(p + q + 1)), Int[(a + b*x +
c*x^2)^(p - 1)*(d + f*x^2)^q*Simp[h*p*(b*d) + a*(-2*g*f)*(p + q + 1) + (2*h*p*(c*d - a*f) + b*(-2*g*f)*(p + q
+ 1))*x + (h*p*((-b)*f) + c*(-2*g*f)*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, g, h, q}, x] && NeQ
[b^2 - 4*a*c, 0] && GtQ[p, 0] && NeQ[p + q + 1, 0]

Rule 1044

Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[-2*
a*g*h, Subst[Int[1/Simp[2*a^2*g*h*c + a*e*x^2, x], x], x, Simp[a*h - g*c*x, x]/Sqrt[d + e*x + f*x^2]], x] /; F
reeQ[{a, c, d, e, f, g, h}, x] && EqQ[a*h^2*e + 2*g*h*(c*d - a*f) - g^2*c*e, 0]

Rule 1050

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(c*d - a*f)^2 + a*c*e^2, 2]}, Dist[1/(2*q), Int[Simp[(-a)*h*e - g*(c*d - a*f - q) + (h*(c*d - a*f + q) -
 g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Dist[1/(2*q), Int[Simp[(-a)*h*e - g*(c*d - a*f + q
) + (h*(c*d - a*f - q) - g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g,
 h}, x] && NeQ[e^2 - 4*d*f, 0] && NegQ[(-a)*c]

Rule 1092

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + B*c*x)/((a + c*x^2)*Sqrt[d
+ e*x + f*x^2]), x], x] /; FreeQ[{a, c, d, e, f, A, B, C}, x] && NeQ[e^2 - 4*d*f, 0]

Rule 3782

Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n_.) + (c_.)*(cot[(d_.) + (e
_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] :> Dist[-f/e, Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2
)), x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rule 6857

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \cot ^3(d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx &=-\frac {\text {Subst}\left (\int \frac {x^3 \sqrt {a+b x+c x^2}}{1+x^2} \, dx,x,\cot (d+e x)\right )}{e}\\ &=-\frac {\text {Subst}\left (\int \left (x \sqrt {a+b x+c x^2}-\frac {x \sqrt {a+b x+c x^2}}{1+x^2}\right ) \, dx,x,\cot (d+e x)\right )}{e}\\ &=-\frac {\text {Subst}\left (\int x \sqrt {a+b x+c x^2} \, dx,x,\cot (d+e x)\right )}{e}+\frac {\text {Subst}\left (\int \frac {x \sqrt {a+b x+c x^2}}{1+x^2} \, dx,x,\cot (d+e x)\right )}{e}\\ &=\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e}-\frac {\left (a+b \cot (d+e x)+c \cot ^2(d+e x)\right )^{3/2}}{3 c e}-\frac {\text {Subst}\left (\int \frac {\frac {b}{2}-(a-c) x-\frac {b x^2}{2}}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{e}+\frac {b \text {Subst}\left (\int \sqrt {a+b x+c x^2} \, dx,x,\cot (d+e x)\right )}{2 c e}\\ &=\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e}+\frac {b (b+2 c \cot (d+e x)) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{8 c^2 e}-\frac {\left (a+b \cot (d+e x)+c \cot ^2(d+e x)\right )^{3/2}}{3 c e}-\frac {\text {Subst}\left (\int \frac {b+(-a+c) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{e}+\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{2 e}-\frac {\left (b \left (b^2-4 a c\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{16 c^2 e}\\ &=\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e}+\frac {b (b+2 c \cot (d+e x)) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{8 c^2 e}-\frac {\left (a+b \cot (d+e x)+c \cot ^2(d+e x)\right )^{3/2}}{3 c e}+\frac {b \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{e}-\frac {\left (b \left (b^2-4 a c\right )\right ) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{8 c^2 e}+\frac {\text {Subst}\left (\int \frac {-b \sqrt {a^2+b^2-2 a c+c^2}+\left (-b^2-(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{2 \sqrt {a^2+b^2-2 a c+c^2} e}-\frac {\text {Subst}\left (\int \frac {b \sqrt {a^2+b^2-2 a c+c^2}+\left (-b^2-(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{2 \sqrt {a^2+b^2-2 a c+c^2} e}\\ &=\frac {b \tanh ^{-1}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 \sqrt {c} e}-\frac {b \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{16 c^{5/2} e}+\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e}+\frac {b (b+2 c \cot (d+e x)) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{8 c^2 e}-\frac {\left (a+b \cot (d+e x)+c \cot ^2(d+e x)\right )^{3/2}}{3 c e}-\frac {\left (b \left (b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{2 b \sqrt {a^2+b^2-2 a c+c^2} \left (b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right )+b x^2} \, dx,x,\frac {-b^2-(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )+b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{e}-\frac {\left (b \left (b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{-2 b \sqrt {a^2+b^2-2 a c+c^2} \left (b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right )+b x^2} \, dx,x,\frac {-b^2-(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )-b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{e}\\ &=\frac {\sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \tan ^{-1}\left (\frac {b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )-b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}+\frac {b \tanh ^{-1}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 \sqrt {c} e}-\frac {b \left (b^2-4 a c\right ) \tanh ^{-1}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{16 c^{5/2} e}-\frac {\sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \tanh ^{-1}\left (\frac {b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )+b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}+\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e}+\frac {b (b+2 c \cot (d+e x)) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{8 c^2 e}-\frac {\left (a+b \cot (d+e x)+c \cot ^2(d+e x)\right )^{3/2}}{3 c e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 31.22, size = 411, normalized size = 0.55 \begin {gather*} \frac {\left (\frac {3 b^2-8 a c+32 c^2}{24 c^2}-\frac {b \cot (d+e x)}{12 c}-\frac {1}{3} \csc ^2(d+e x)\right ) \sqrt {\frac {-a-c+a \cos (2 (d+e x))-c \cos (2 (d+e x))-b \sin (2 (d+e x))}{-1+\cos (2 (d+e x))}}}{e}+\frac {\left (8 i \sqrt {a-i b-c} c^{5/2} \text {ArcTan}\left (\frac {i b+2 c+(2 i a+b) \tan (d+e x)}{2 \sqrt {a-i b-c} \sqrt {c+\tan (d+e x) (b+a \tan (d+e x))}}\right )-8 \sqrt {a+i b-c} c^{5/2} \tanh ^{-1}\left (\frac {b+2 i c+(2 a+i b) \tan (d+e x)}{2 \sqrt {a+i b-c} \sqrt {c+\tan (d+e x) (b+a \tan (d+e x))}}\right )-b \left (b^2-4 c (a+2 c)\right ) \tanh ^{-1}\left (\frac {2 c+b \tan (d+e x)}{2 \sqrt {c} \sqrt {c+\tan (d+e x) (b+a \tan (d+e x))}}\right )\right ) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \tan (d+e x)}{16 c^{5/2} e \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[d + e*x]^3*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2],x]

[Out]

(((3*b^2 - 8*a*c + 32*c^2)/(24*c^2) - (b*Cot[d + e*x])/(12*c) - Csc[d + e*x]^2/3)*Sqrt[(-a - c + a*Cos[2*(d +
e*x)] - c*Cos[2*(d + e*x)] - b*Sin[2*(d + e*x)])/(-1 + Cos[2*(d + e*x)])])/e + (((8*I)*Sqrt[a - I*b - c]*c^(5/
2)*ArcTan[(I*b + 2*c + ((2*I)*a + b)*Tan[d + e*x])/(2*Sqrt[a - I*b - c]*Sqrt[c + Tan[d + e*x]*(b + a*Tan[d + e
*x])])] - 8*Sqrt[a + I*b - c]*c^(5/2)*ArcTanh[(b + (2*I)*c + (2*a + I*b)*Tan[d + e*x])/(2*Sqrt[a + I*b - c]*Sq
rt[c + Tan[d + e*x]*(b + a*Tan[d + e*x])])] - b*(b^2 - 4*c*(a + 2*c))*ArcTanh[(2*c + b*Tan[d + e*x])/(2*Sqrt[c
]*Sqrt[c + Tan[d + e*x]*(b + a*Tan[d + e*x])])])*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2]*Tan[d + e*x])/(16
*c^(5/2)*e*Sqrt[c + b*Tan[d + e*x] + a*Tan[d + e*x]^2])

________________________________________________________________________________________

Maple [B] result has leaf size over 500,000. Avoiding possible recursion issues.
time = 0.53, size = 17768080, normalized size = 23785.92 \[\text {output too large to display}\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e*x+d)^3*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)^3*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*cot(x*e + d)^2 + b*cot(x*e + d) + a)*cot(x*e + d)^3, x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)^3*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a + b \cot {\left (d + e x \right )} + c \cot ^{2}{\left (d + e x \right )}} \cot ^{3}{\left (d + e x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)**3*(a+b*cot(e*x+d)+c*cot(e*x+d)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*cot(d + e*x) + c*cot(d + e*x)**2)*cot(d + e*x)**3, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(e*x+d)^3*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*cot(e*x + d)^2 + b*cot(e*x + d) + a)*cot(e*x + d)^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\mathrm {cot}\left (d+e\,x\right )}^3\,\sqrt {c\,{\mathrm {cot}\left (d+e\,x\right )}^2+b\,\mathrm {cot}\left (d+e\,x\right )+a} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d + e*x)^3*(a + b*cot(d + e*x) + c*cot(d + e*x)^2)^(1/2),x)

[Out]

int(cot(d + e*x)^3*(a + b*cot(d + e*x) + c*cot(d + e*x)^2)^(1/2), x)

________________________________________________________________________________________